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ABSTRACT 
A cybersecurity exploit can be crafted to affect the vehicle diagnostic adapter system, which 

consists of the technician, vehicle diagnostic adapter, device drivers, and maintenance software 
all working together in a trusting relationship.  

In this paper, application layer encryption of the SAE J1939 diagnostic traffic between the 
vehicle diagnostic application and the in-vehicle secure gateway is developed to mitigate the 
vulnerabilities in potential attack paths. The proposed encryption strategy uses AES-128, which 
uses 16-byte cipher blocks. The secure connection is established by adjusting the bit rate to over 
twice the normal speed and packing a single J1939 message into two encrypted sequential CAN 
frames, 

The in-vehicle diagnostic gateway employs a hardware security module. A provisioning process 
is employed wherein the diagnostic application and the hardware security module both generate 
public-private key pairs. An elliptic curve Diffie-Hellman (ECDH) key exchange then takes place. 
Thus, each diagnostic session uses ephemeral symmetric session keys that are securely exchanged 
between the hardware security module and the diagnostics application.  

This approach is effective in mitigating attacks originating at the driver (DLL) level, such as an 
attacker that would exfiltrate and modify data using the system and vehicle diagnostic subsystems 
in a Windows environment. Also, as the secure key system can be centrally administered, the ability 
for user attribution through key management is possible.  

While the approach requires the addition of a hardware security module on the vehicle, the 
hardware strategy presented could be implemented in an arbitrary electronic control module on 
the vehicle. Vulnerabilities and mitigations are explained in detail to provide a solution to secure 
diagnostic sessions for heavy vehicles.  

 
Citation: J. Daily, P. Kulkarni, “Secure Heavy Vehicle Diagnostics”, In Proceedings of the Ground Vehicle Systems 
Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2020. 

 
1. Introduction 

Heavy vehicles undergo routine maintenance and 
inspections, which entails connecting a vehicle 
diagnostic adapter (VDA) to the diagnostic port on 
the vehicle and running some diagnostic software 
on the shop computer. This process happens 

frequently and represents a potential cybersecurity 
vulnerability. While the individual vehicle is often 
disconnected from the diagnostic session, the 
computer, usually a PC laptop running Windows, is 
frequently connecting to the Internet. In fact, many 
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diagnostic software systems require Internet 
connections for licensing and firmware updates.  

The diagnostic connections for heavy vehicles 
typically follow the recommended practice (RP) 
number 1210 as published by the Technology and 
Maintenance Council (TMC) of the American 
Trucking Association (ATA) [1].  The concept 
behind the RP1210 approach was to decouple the 
diagnostic software from the vehicle network. This 
gives the vehicle maintainer the ability to use only 
one RP1210 compliant device that will work with 
the different diagnostic software needed for the 
subsystems of a heavy vehicle. The programmers 
and developers of the maintenance software can 
write to the RP1210 API and the vendors of the 
different vehicle diagnostic adapters (VDAs) can 
serve the API through their vendor specific 
dynamically loaded libraries (DLLs).  

From a security perspective, this approach implies 
a sense of trust on behalf of the diagnostic software 
regarding the sanctity of the vehicle network traffic. 
This trust is only maintained if the VDA system 
faithfully sends and receives the actual vehicle 
network traffic. However, there are no controls in 
place for the maintenance software or ECU for 
validating the integrity and authenticity of the data 
passing through the RP1210 subsystem.   

Cybersecurity associated with heavy vehicles 
have recently become an issue. While cybersecurity 
related to passenger cars was brought to the 
forefront in 2010 by Kosher, et al. [2], the heavy 
vehicle industry lagged a few years. The National 
Motor Freight Traffic Association, Inc’s 
whitepaper on the state of heavy vehicle 
cybersecurity in 2015 [3] marks a beginning of the 
industry efforts to address cybersecurity efforts. 
This provides a decent survey of the literature and 
cybersecurity efforts taken place. The heavy 
vehicle industry became more aware of the issue as 
it started standard making efforts to address 
cybersecurity. Also, descriptions of building 
cybersecurity centric testbeds were presented in the 
literature [4]. Product briefs and whitepapers have 
come out regarding implementations for 

technologies around diagnostics for passenger cars 
[5], but there are no cybersecurity studies in the 
literature for RP1210 based diagnostic systems.  

 
2. Assumptions 

The context of this work is based on some 
enabling assumptions. These assumptions are 
based on author experiences with commercial 
heavy vehicles with limited knowledge of military 
or proprietary systems.  

We also assume the reader is familiar with some 
basic cryptography primitives and cybersecurity 
concepts. Ross Anderson provides a decent 
introduction into modern cybersecurity [6]. 

 
Vehicle System Architecture 

We assume all relevant diagnostic 
communication takes place over a single CAN 
channel as defined in SAE J1939. This CAN 
channel is typically found on pins C and D of the 
Deutsch 9-pin diagnostic connector in the driver 
compartment of the cab of the vehicle. The bit rate 
for the CAN bus is set to 250,000 bits per second.  

Figure 1: Vehicle architecture showing potential attack vectors in 
the diagnostic system. 
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We assume there are no other diagnostic 
communications, like a J1708/J1587 network or an 
installed telematics device.  

As shown in Figure 1, the secure gateway 
separates the main SAE J1939 backbone from the 
diagnostic port. There are no communications 
through the diagnostic port for anything other than 
vehicle diagnostics.  

Physical access to the vehicle is required to 
connect a vehicle diagnostics adapter to the 
diagnostic port. Once the VDA is connected, the 
vehicle system adds the additional hardware and 
software stack of the diagnostic services, to include 
the back-end servers. 

 
Attack Vectors 

For this work, we are assuming an attacker will 
try to penetrate the Windows based diagnostic 
computer or the vehicle diagnostic adapter. We 
assume the diagnostic application is secure and 
protected. Protecting the diagnostics software 
against a cybersecurity attack may be important, 
but it is beyond the scope of this paper. The security 
of applications running on a PC would employ a 
different set of solutions and can benefit from 
existing strategies.  

We also assume the SAE J1939 network traffic is 
safe. This means the secure gateway will faithfully 
report the J1939 traffic it sees to the PC 
Application. While attacks to the J1939 network are 
possible, they often require physical access or 
tampering with the supply chain. Internal J1939 
intrusion defenses are a subject of continuing study 
but are beyond the scope of this paper.  

An adversary can attack the diagnostic systems in 
the following ways: 

To summarize, the proposed solution aims to 
mitigate attacks anywhere in the communication 
chain from the PC based diagnostics application to 
the diagnostics gateway.  

 
3. Requirements 

The goal of securing heavy vehicle diagnostics 
needs to be broken down into smaller measurable 

requirements by which the overall system can be 
evaluated. These requirements drive design and 
implementation decisions. There are many goals 
and requirements to consider, so the following 
subsection break them down by their scope. 

 
System Requirements 

Enumerated system requirements (SRs) for the 
vehicle and diagnostic system are as follows: 

SR1: Maintain compatibility with existing J1939 
Architectures  

SR2: Provide a solution that is agnostic of the 
vehicle diagnostic adapter.  

SR3: Enable offline diagnostics sessions.  
SR4: Store CAN Data Logs based on event 

triggers. 
 

Cybersecurity Requirements 
The cybersecurity requirements (CRs) are 

enumerated as follows: 
CR1: Use unique key material so any key leakage 

does not compromise other systems. 
CR2: Use secure storage hardware for private key 

storage on the vehicle. 
CR3: Use existing best practices for 

cryptographic implementations. For example, 
AES-128 can be used for symmetric encryption, 
Elliptic Curve Cryptography can be used for 
asymmetric encryption. Any new or untested 
encryption systems shall not be used.  

CR4: Any sensitive key material should be 
encrypted for storage.  

 
Design Alternatives 

Before explaining the prototyped solution in 
detail, this section will share some approaches that 
were considered, but ultimately dismissed.  

Alternative 1: Use a software only solution. This 
approach would improve the capabilities of each 
electronic control module to support secure 
diagnostic communication. This approach was 
abandoned because the authors do not have access 
to the source codes to run on the individual modules 
on the vehicle. 
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Alternative 2: Use an alternative communication 
path that circumvents the RP1210 communication 
system. Perhaps Ethernet or wireless technologies 
could be used This path would add another 
hardware device to the solution and disrupt a well-
known and accepted workflow of connecting a 
vehicle diagnostic adapter to the diagnostic port.  

Alternative 3: Secure each individual path of 
communications uniquely within the RP1210 
chain. This approach would not transfer across the 
different vendors of vehicle diagnostic adapters, 
which was one of the issues that led to the creation 
of RP1210 over 30 years ago.  

The approach taken is hardware and driver 
agnostic when it comes to the RP1210 vehicle 
diagnostic adapter.  

 
4. Hardware Prototype 

 
Figure 2: Printed Circuit Board for hand assembly 

Figure 3: Assembled circuit card assembly 

Figure 4: Ruggedized enclosure to mount in a vehicle 

 
In this section, we provide details of the hardware 

prototype with enough detail for the reader to 
reproduce our example. The following are the 
essential components for the hardware design: 

The solution to secure the diagnostics 
communication requires a platform to perform the 
security algorithms. Since access to source codes 
and tool chains for existing gateways or electronic 
control units is not practical, we designed our own 
gateway leveraging open source software and 
evaluation hardware. The platform of choice was 
the Teensy 4.0 evaluation board from PJRC.com. 
This evaluation board features a 600MHz 
iMXRT1062 ARM-32bit processor with three 
CAN channels, two of which are available on the 
0.100” spaced headers of the Teensy 4.0.  

The essential components of the circuit design 
include the Teensy 4.0, both CAN transceivers, the 
terminating resistors, and the ATECC608A 
hardware security module. The SD Card provides 
the additional capability for logging data.  

The display, GPS, and inertial measurement unit 
add features for status updates and contextual 
information. These additional features are not 
needed for secure diagnostic communication. 
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The complete schematic diagram for the Secure 
Gateway Prototype is shown in the Appendix.  The 
Teensy 4.0 evaluation board is connected to the 
CAN busses with two Microchip MCP2562 CAN 
Transceivers, which forms the break in the line for 
the diagnostics communication. The printed circuit 
board (PCB) was laid out for through-hole parts and 
is available to purchase from Osh Park. The PCB 
fits in a Deutsch/TE EEC-325X4B enclosure 
designed for automotive use. The enclosure is 
sealed with the Deutsch DTM13-12PA-R008 PCB 
to connector system. Admittedly, the space in the 
enclosure is tight when using the additional 
prototyping features and display. Also, the SD Card 
holder, FFC ribbon cable, and the ATECC608A 
security module are surface mount packages, which 
will require additional skill to hand assemble the 
boards. 

Figure 2 shows the layout of the printed circuit 
board used in this study. The additional silkscreen 
lettering helps with part placement and assembly by 
hand. The completed system is shown in Figure 3 
and the enclosed assembly is shown in Figure 4.  
 
Installing the Secure Gateway 

The Gateway enclosure can be mounted at any 
convenient location on the vehicle.  

Figure 5: Wiring harness for the Secure Gateway 

The wired connector splits the connection to the 
diagnostic 

port. The wiring harness is for the Secure Gateway 
is shown in Figure 5. The harness shows two 9-pin 
diagnostic connectors; the plug with female 
contacts is on the left of the illustration and the 
socket with male contacts are on the right. The 
typical heavy vehicle with have the Diagnostic 
Network exposed in the driver’s compartment with 
the male pins. The vehicle diagnostic adapter will 
connect using the housing with female contact, as 
shown on the left of Figure 5. This means the 
gateway can be installed into the existing 
diagnostic port and the new port installed in its 
place. This installation creates a brand new point-
to-point CAN bus for use only by the vehicle 
diagnostics adapter and the secure gateway. Since 
this new network is not connected directly to the 
J1939 network, we can define its message structure 
and bitrate.  

5. Secure Diagnostics 
The strategy for maintaining confidentiality of the 

messages passing through the VDA, its drivers, and 
the USB stack is to encrypt each CAN frame using 
AES-128. However, 128 bit block ciphers require 
16 byte blocks and CAN only transmits 8 bytes (64-
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bits) at a time. This means we will need to take each 
J1939 frame and pack it into two high speed 
encrypted CAN frames. These packed frames will 
be enciphered and send over the diagnostic CAN 
network in ordered pairs. The PC Application will 
read these raw 11-bit CAN frames and reassemble 
the message pairs, check their validity, and present 
the decrypted J1939 message to the diagnostic 
application for processing.  

 The messages on the newly created point-to-
point diagnostic CAN Bus use 11-bit CAN IDs at 
1,000,000 bits per second. Since this is twice the 
speed of the fastest J1939 implementation 
(500kbps), the diagnostic CAN Bus should be able 
to keep pace with the original J1939 network, even 
if each J1939 message was expanded and fit into 2 
messages on the fast diagnostic CAN.  

In this scheme, the first three bits of the 11-bit 
CAN IDs are used to determine the message type. 
There are three types of messages used, presented 
below as C header defines: 

 
#define SESSION_CONTROL 0x100 
#define ENCRYPTED_DATA  0x200 
#define HEART_BEAT      0x400 

Figure 6: Separating a single J1939 CAN Frame into two 8-byte 

 
To send encrypted data, the message ID starts 

with a 0x200. The sequence is determined by the 
first 8 bytes. Even values of the ID contain the first 
part of the block cipher and the odd values of the 
ID contain the last 8 bytes of the block cipher. A 
breakdown of mapping a J1939 message to the pair  

 

Figure 7: Flow chart describing the operations used to startup the 
Secure Gateway  
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of ENCRYPTED_DATA messages is shown in 
Figure 6. The cipher text data is calculated using 
the AES-128 algorithm in cipher-block-chaining 
mode (AES-CBC).  

 
 
Implementation Flow Chart 

There are four main routines to describe the 
software operation of the Secure Gateway. There 
are two standard routines, startup and loop, 
followed by two interrupt routines to handle the 
reception of CAN frames. There are two CAN 
frame message processing routines: one for 
receiving diagnostic communications from the 
VDA and the other for processing messages from 
the J1939 vehicle network.  

The flow chart in  shows the startup routine. The 
first operation communicates with the 
ATECC608A security module to determine its 
serial number and state. The serial number will be 
used by the diagnostics software on the PC to 
determine what key is calculated to share a secret. 
For the ATECC608A to perform the necessary 
calculations, the configuration and data zones need 
to be locked. A generated private key should be 
stored and locked in the ATECC608A from which 
it can calculate a public version of that key. 

Once the public version of the Secure Device Key 
is computed, in can be loaded into the 
microprocessor memory and shared upon request. 
To ensure against man-in-the-middle attacks, the 
public key is digitally signed, so the receiving node 
can have high confidence the public key is from the 
correct device.  

The ATECC608A also claims to have a true 
random number generator (TRNG) that can 
produce 32 bytes at a time. The startup procedure 
requests these bytes and splits them into two 16-
byte words; one for the initialization vector and the 
other for the AES-128 session key. From these 
random numbers used once (nonce) values, an 
encryptor and decryptor are setup using the AES-
128 algorithm in CBC mode. 

With a symmetric encryptor and decryptor setup 
on the Secure Gateway, there needs to be a way of 
sharing the initialization vector and session key 
with the Secure PC Diagnostics Application (PC 
App). The method to share the session key is to 
send an encrypted version of the key from the 
Secure Gateway to the PC App. The session key is 
encrypted with a computed shared secret derived  

Figure 8: Main loop with basic utility calls  
 
from the Elliptic Curve Diffie-Hellman key 

exchange routine. However, the PC App does not 
request the public key from the Secure Gateway. 
Instead, it requests the key from the provisioning 
service based on proper credentials. This provides 
an opportunity for usage attribution and user 
accountability, which is an improvement in the 
cybersecurity posture compared to current 
approaches.   

The encryptor is setup to convert clear J1939 
based vehicle CAN frames in enciphered diagnostic 
CAN frames. The decryptor is setup for the 
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opposite operation, which is to take encrypted 
diagnostics CAN message pairs and convert them 
to J1939 vehicle network CAN frames. The same 
ephemeral session key and initialization vector is 
used for both the encryptor and decryptor.  

Once the key material is initialized, the CAN 
busses are started, one at the speed of the vehicle 
bus and the other at the fastest rate specified for 
CAN 2.0, which is 1Mbps.  Once the CAN message 
receive interrupt handlers are registered, the system 
finishes with the startup routine and begins the 
main processing loop. 

The main loop, shown in Figure 8, is 
predominantly responsible for updating the 
displays and calling the service routine that sends 
the CAN messages. The CAN messages are written 
to a circular buffer first, then a service function is 
called to push the CAN message from the circular 
buffer to the CAN Controller. 
Each time a CAN message is received from the 
vehicle CAN bus, which is the J1939 network, an  
interrupt service routine is executed. This routine is 
shown in Figure 9. The first section of the receive 
routine is to check the flags setup for a successful 
session. The session is determined from a 
successful key exchange and a consistent heartbeat 
signal. If those prerequisites are confirmed, then the 
message can be enciphered with the encryptor 
object and transmitted as a pair of CAN frames.  

The heartbeat signal is a CAN frame from the PC 
App that is designated by starting the 11-bit CAN-
ID with 0x400. This message is crafted by the PC 
App thread responsible for secure communication. 
When a Secure Gateway decrypts the message, it 
resets a timer and continues with the secure 
diagnostics session. To inform the PC App that the 
Secure Gateway is still connected, it reflects the 
message. Since these messages are encrypted, the 
session key and sequence must be preserved to have 
a legible decoding of the heartbeat. 

The decrypted message contained in the heartbeat 
is a J1939-like frame with a 4-byte ID field 
representing a counter, a data length code (DLC) of 
8, and an arbitrary message of 8 bytes. This so-

called CAN frame is packed, encrypted and sent 
according to the message structure shown in Figure 
7. Since the heartbeat contains a 16-bit cyclic-
redundancy check, if the encrypted message was 
either manipulated or decrypted with the wrong 
cipher, the CRC check would fail, and the session 
would timeout.  

When the PC App is not running, the Secure 
Gateway is not receiving any heartbeat signals and 
the session has not been established. The Secure 
Gateway is holding onto a session key from the 
startup sequence and it is ready to share upon 
request. To initiate the key exchange, the Secure 
Gateway performs the interrupt service routine 
shown in Figure 10.  

The routine checks for three different kinds of 
CAN message IDs as defined in Section 1.5. If the 
first nibble of the 11-bit ID is of the SESSION type, 
the following options are defined: 
#define REQUEST_PUBLIC_KEY          0x110 
#define SEND_PUBLIC_KEY_DATA        0x120 
#define REQUEST_ENCRYPTED_KEY       0x130 
#define SEND_ENCRYPTED_KEY          0x140 
#define REQUEST_INIT_VECTOR         0x150 
#define SEND_INIT_VECTOR            0x160 
#define REQUEST_SERIAL_NUMBER       0x170 
#define SEND_SERIAL_NUMBER          0x180 
#define REQUEST_PASSCODE            0x190 
#define SEND_PASSCODE               0x1A0 
#define RESET_SESSION               0x1B0 
#define REQUEST_SIGNATURE           0x1C0 
#define SEND_SIGNATURE              0x1D0 
#define SESSION_ERROR               0x1E0 
#define SESSION_ABORT               0x1F0 
Notice the special case of 0x1F0 is an abort 

message that would restart the Gateway and 
develop new session keys.  

Since the PC App initiates the communication, it 
first requests the serial number of the secure 
gateway. The define for this request is 0x170. This 
means that if the Secure Gateway sees a message 
with the ID of 0x170, then it will reply with the 
11bit ID of up to 16 messages of 0x180 + n,  where 
n = 0x0,1,2, …, F, is the sequence number. 
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Figure 9: Vehicle Message Interrupt Service Routine 

Since the largest data exchange using ECC with 
the P256 curve is 64 bytes, only 8 messages 
maximum are needed to respond with the requested 
data.  

After the PC App requests and receives the serial 
number of the Secure Gateway, it needs to calculate 
the same shared secret. The shared secrets are 
calculated using their own private key and the 
public key of the other device. The public key used 
by the Secure Gateway was loaded from secure 
memory upon boot and subsequently used to 
determine a shared secret, the PC Application needs 
to calculate its shared secret based on the private 
key that the Secure Gateway already had. This 
means the PC Application needs to either 1) request 
that the session key be decoded from a secure 
service, or 2) check out the private key matching 
the pre-shared public key so it can compute its own 
shared secret. To understand how a key checkout or 
secret calculation is implemented, we need to 
discuss device provisioning.  

 
6. Key Management 

The strategy to secure diagnostic communications 
is to always use ephemeral session keys generated 
by a high-quality random number generator built 
into the Secure Gateway. 

  
Secure Device Provisioning 

When the Secure Gateway is ready for final 
testing and assembly, it needs to be provisioned. At 
a minimum, the ATECC608A is configured such 
that a self-generated P256 ECC key is generated 
and locked into a slot. In this prototype, we 
designated Slot 0 to contain this unique private key. 
This key should never be readable or able to be 
leaked. From the key stored in Slot 0, a public key 
can be generated and shared with a database. The 
database key is the 72-bit unique ID in ASCII form 
(18 characters). In addition to storing the public key 
from the ATECC608A chip in the database, a 
server private key from the P256 curve is generated 
along with its corresponding public key.  
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Figure 10: Flow diagram to process CAN frames from the Vehicle 

Diagnostic Adapter and the PC Application 

This process generates the ability for a pre-shared 
secret to be calculated. Furthermore, the 
ATECC608A can update the server public key 
using a privileged write feature.  

All key material should be encrypted at rest with 
a key tied to a hardware security module. In the 
prototype example, we have implemented the 
database as Amazon Web Services DynamoDB and 
each device has a data key produced and encrypted 
using the AWS Key Management Service. This 
provides an audit trail into who and when the key 
material is being used.  

By pre-sharing public keys, it is fairly 
straightforward to verify if requests are from 
legitimate sources. If the public keys do not match, 
then the device is not part of the ecosystem. 

 
Checking Out Keys 

There may be cases where a maintainer may want 
to initiate a secure diagnostic session when access 
to the server and database is not feasible. In this 
case, a set of anticipated keys can be checked out 
from the server and stored locally on the PC App 
machine. At first, this may sound very risky since 
the device private keys will be on a potentially 
unsecured computer. To mitigate this risk, the 
private keys checked out from the server are in the 
encrypted PEM format. Furthermore, the passcode 
to decrypt the PEM key is derived from the pre-
shared secret and a passcode. This means the 
operator needs to have physical access to the 
vehicle and the gateway to decrypt the PEM key in 
addition to an 8-byte unique passcode. Having 
access to the vehicle without an authorized user 
passcode or having a passcode without the 
hardware renders the key material meaningless.  

During the provisioning process, the preshared 
secret is calculated on the server because the server 
has generated a private key and shared the public 
key. The ATECC608A has done the same. Two 
random strings of characters are generated on the 
server. The first string is used as a passcode. The  
other string is padded with 8 zeros to make a 16-
byte block. This 16-byte block is encrypted using 
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the AES-128 in ECB mode to create a ciphertext of 
the PEM key pass code.   

 
Creating the PEM file key 

The implementation used during provisioning is 
an AWS lambda function written in Python. The 
source code is available as open source on Github1. 
The algorithm of the provisioning is as follows: 

If an authorized, valid user requests a key for 
offline use, then the server will respond with the 
Encrypted Server Private Key and the Random 
device code. The Random device password will be 
emailed to the authorized user. Since the only way 
to derive the actual password is through the AES-
128 cipher based on the preshared key, only the 
server or the ATECC608A can compute the 
passcode. This means there are two levels of 
security for the unique key material: the passcode 
(something you know) and the device code 
(something you have). 

 
Secure Session Key Exchange 

The PC App initiates the session. In the Python -
based prototype, the SecureMessageThread class 
was defined to handle the setup, encryption, and 
decryption of the PC App. The thread 
communicates with the rest of the program through 
queues and requires function prototypes to 
communicate with the VDA DLL.  

To demonstrate the setup when starting the 
SecureMessageThread in the PC App, a transcript 
of the network traffic is shown in the following 
paragraphs. The CAN traffic is the direct output of 
the Linux SocketCAN can-utils program called 
candump. 
 

can1  1F0   [8]  00 00 00 00 00 00 00 00 
can1  170   [0] 

can1  180   [8]  01 23 71 6D B2 52 F4 6C 
can1  181   [8]  EE 01 01 01 56 6C 4A 4B 

can1  150   [0] 

                                                           
1 

https://github.com/SystemsCyber/CANWatermarking/blob/
master/serverless/provision.py 

can1  160   [8]  F6 73 9D 2A 5E 03 B0 CB 
can1  161   [8]  62 FE 82 72 84 41 55 DA 

can1  130   [0] 
can1  140   [8]  6F 02 7E E7 AA 83 1B 06 
can1  141   [8]  07 68 CD A9 43 5D 0B 82 

can1  110   [0] 
The Secure Gateway sends the device public key 
can1  120   [8]  56 6C 4A 4B D2 40 82 F9 
can1  121   [8]  85 42 51 64 7B 97 25 35 
can1  122   [8]  49 A4 1D 53 69 92 D3 6D 
can1  123   [8]  14 0F B7 A6 6A CA 94 C9 
can1  124   [8]  81 FF B5 A3 8F 5C D9 BF 
can1  125   [8]  9E 20 46 CE 5B 77 72 F9 
can1  126   [8]  1F BA BA 7A 88 90 BB 45 
can1  127   [8]  51 E1 83 A5 B3 03 9F 28 

can1  1C0   [0] 
can1  1D0   [8]  1D 95 7D D4 B0 4B BB CE 
can1  1D1   [8]  FA 76 23 AB 6C CB AF F6 
can1  1D2   [8]  F7 D8 42 E5 35 A2 60 98 
can1  1D3   [8]  40 6C 20 E9 E3 6B EA FE 
can1  1D4   [8]  B4 49 9E D8 93 F3 D4 78 
can1  1D5   [8]  86 20 80 EC AA 64 FF 3A 
can1  1D6   [8]  64 7E 54 91 86 AD 60 E0 
can1  1D7   [8]  0B 25 53 3E 92 1B 09 9D 

The PC App can now verify the public key. 
can1  190   [8]  42 41 74 6B 75 39 38 6A 
can1  1A0   [8]  98 E6 60 B6 17 A3 7C 65 
can1  1A1   [8]  39 9C 4A 50 8D CB 4C A6 

The PC App prepends the passcode to the returned 
device code to create a 24-byte key for the 
encrypted PEM file on the PC. This PEM key is 
loaded into memory and used to compute the shared 
secret that was used to encrypt the session key. 
Once the session key is decrypted and the encryptor 
and decryptor are initialized, a heartbeat is 
transmitted. 

can1  400   [8]  BA 21 FA 3E A6 E5 7E 95 
can1  401   [8]  D6 DD 63 42 04 20 04 2F 
can1  406   [8]  95 E1 9E D9 32 75 DE 55 
can1  407   [8]  09 DC 09 4D B8 3C DF CF 
can1  200   [8]  C9 DA F9 C2 E1 CC A3 BC 
can1  201   [8]  3D 04 50 D2 49 9D A2 E0 
can1  202   [8]  41 83 BF E1 91 26 89 46 
can1  203   [8]  50 D7 A2 18 FE A6 1C B6 
can1  204   [8]  FC C6 DC DB 87 6F 8B CC 
can1  205   [8]  E7 C8 10 A2 AD E2 6D 8F 
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can1  206   [8]  E6 A3 61 28 29 12 CD 7C 
can1  207   [8]  42 5A 5F 26 F0 1C 7D 58 
can1  208   [8]  2E 1A FA 8E 63 2B DF C7 
can1  209   [8]  AA BB 06 C1 6E 1F 6A C9 

 
Analysis of the Session Setup 

The transcript of the session setup shows about 
200 bytes of data are exchanged. However, the 
public key and its signature may not be needed, 
except for provisioning. Since the ATECC608A 
secret key is not changing and the server public key 
is not changing, the derived shared secret is not 
changing. Therefore, it can be securely stored in 
one of the protected slots of the ATECC chip and 
the need to exchange public keys is eliminated. 

Key material on the CAN bus is either AES 
encrypted, as in the session key, or is only a partial 
key, as in the device code. The need to send the 
device code over the CAN bus is because the PC 
App cannot reach the backend server. With a 
connected PC App, there would be no need for the 
device code because the encrypted session key 
would be decrypted on the server and transmitted 
back to the PC App using an https protocol (TLS). 

The benefits of this setup approach include 
If the requirement to be able to have diagnostic 

sessions without Internet connectivity is relaxed, 
then the encrypted session key could be decrypted 
on the server with only the serial number as the 
accompanying piece of information.  

 
7. Cybersecurity Attacks 

To test the Secure Gateway and PC App 
functionality and demonstrate the efficacy of the 
approach a few cyberattacks were implemented on 
a test bench. These attacks focused on two entry 
points: 1) the DLL driver and 2) the VDA firmware. 
The attacks targeted two types of messages: A) 
single frame J1939 messages, 2) Multiframe 
messages using the J1939 Transport Protocol. 
Other transport protocol attacks would be similar.   

The attacks manifest themselves as man-in-the-
middle attacks. The effect would be the same if the 
attack was implemented as a Shim DLL, a rogue 
VDA, or an actual CAN man-in-the-middle device.  

 
Shim DLL 

The Shim DLL pretends to be an actual RP1210 
compliant device driver with legitimate function 
calls to perform RP1210 tasks. However, instead of 
having an actual device driver to implement the 
commands and send messages, the Shim DLL loads 
an actual vendor supplied DLL and passes through 
the function calls. However, the Shim DLL has the 
ability to change the data before it presents the 
message to the PC App or the actual VDA driver. 
Hence, the Shim DLL acts as a man-in-the-middle.  

 
Compromised VDA 

A compromised VDA would have a version of 
firmware that does not faithfully report the message 
traffic between the vehicle networks and the PC. 
Creating an attacker VDA requires some 
knowledge of the device driver and device 
firmware and access to the tool chain. However, 
update mechanisms exist where an attacker could 
convert a VDA to an attack node.  

An example of a purpose built compromised 
VDA is shown in Figure 11. Obviously, the overt 
graphics in Figure 11 would not be present in a 
realistic setting. Many RP1210 vehicle diagnostic 
adapters have no cybersecurity protections and 
should not be trusted.  

 
 

 
Figure 11: A compromised vehicle diagnostics adapter (VDA) 

Single Frame Attacks 
A single frame attack on a CAN bus with a man-

in-the-middle follows a basic algorithm: 
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An example attack is to affect the Engine hours 
report. Many rental companies use the Engine 
hours as a method to bill the customer for use of 
machines. If the diagnostic system underreported 
the hours, then the customer may need to pay less. 
Total Engine Hours of Operation are in the first 
four bytes of the J1939 message with a PGN of 
65253.  

 
Multi Frame Attacks 

SAE J1939 networks have a Transport Protocol as 
define in SAEJ1939-21 where the parameters that 
are over 8 bytes are broken into CAN frames and 
then reassembled to present the original data. The 
challenge for attacking this data is the PGN to 
identify the data type is contained in the Transport 
Layer – Connection Management (TP-CM)_ as the 
last three bytes in the data field. If an attacker 
wanted to change the VIN as it passed from the 
J1939 network to the diagnostics application, the 
algorithm would have to look for the TP-CM 
message to identify the PGN of 65260. Since the 
PGN is encoded in reverse byte order, the TP-CM 
message ending in 0xEC, 0xFE, 0X00 would be the 
setup message for transferring the VIN. Subsequent 
Transport Protocol- Data Transfer (TP-DT) 
messages, with a PGN of 60160, will contain the 
data for the VIN. These messages are the ones for 
manipulation.  

 
Attack Example 

An example of manipulating the Engine hours and 
VIN is show in Figure 11 and Figure 12. The valid 
data, as reported on the J1939 network, is shown 
highlighted in yellow. After an attack was 
launched, the data was changed as shown in Figure 
12. The attack on the Engine hours was to change 
all the bytes to 0xAA. The 32-bit unsigned integer 
0xAAAAAAAA is 2,863,311,530 in decimal. The 
conversion factor for engine hours according to 
J1939 is 0.05 hours per bit, which gives the 
displayed value of 143,165,576.5 hours in Figure 
12. Changing the first part of the VIN to ATTACK 
should be readily seen in the figures. 

 

 
Figure 12: Diagnostic software displaying the normal VIN and 

Engine hour data. 

 
Figure 13: Results of an attack through the diagnostics system that 

show different hours and VIN. 

 
Exfiltration Attacks 

The RP1210 system is capable of logging all the 
data through the vendor specific DLL. This logging 
feature can be enabled in the Windows 
environment without the need for any additional 
hardware. If a diagnostic computer is 
compromised, logging feature of the Shim DLL 
could be enabled, and the Shim DLL could transfer 
that data to an unauthorized organization. This 
process of exfiltration can lead to a significant 
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amount of readiness and operational data for heavy 
vehicles. Corporations could assess their 
competition with greater intelligence (i.e. 
determine routes and customers), and defense 
operations may not want other nation states to see 
vehicle utilization data. Instead of eliminating 
leakage of data from the Windows machine, we 
assume data may be leaked. If this is the case, we 
want the data to mean nothing to the recipient.  

 
Mitigating the Attacks 

Since the attacks rely on identifying the messages 
coming through the diagnostic services, the core 
trigger for implementing the attack is not present 
due to the encrypted messages having no 
identifiable pattern. This means an attacker could 
only randomly affect messages. If the messages 
were manipulated between the Secure Gateway and 
the PC application, the decryption would fail and 
the CRC would not match. The message would be 
dropped.  

If data were exfiltrated, the AES-CBC data stream 
would be meaningless without the key. Since the 
session key is securely exchanged using ECDH, the 
likelihood of any actionable intelligence from this 
data leakage is minimal.  

 
8. Concluding Remarks  

The diagnostics and maintenance system of J1939 
enabled heavy vehicles uses a potentially 
vulnerable vendor agnostic system known as 
RP1210. The RP1210 system came to being from 
market pressures to homogenize tooling and 
adapters needed to communicate with heavy 
vehicles in the 1990s, well before the ubiquitous 
connectivity of today. The RP1210 system in use 
today uses third party vehicle diagnostic adapters 
and device driver software. Attacks exploiting 
these communication stacks were demonstrated as 
Engine hours and VIN were changed.  

The solution demonstrated in this work introduces 
a Secure Gateway to communicate directly with the 
PC diagnostics application using the existing 
vulnerable RP1210 system. Since all the messages 

flowing through the vulnerable system are 
encrypted using AES-128, previously effective 
cyberattacks are mitigated.  

A key enabler for this approach to maintain the 
bandwidth and throughput of the existing J1939 
network was the ability to operate in a point-to-
point mode at 1 Mbps speed. This ensures that high 
busload operations, like reprogramming, maintain 
their current level of performance.  

While the prototype introduced an additional 
hardware module in the Secure Gateway, 
alternative implementations are feasible if the logic 
can be implemented in existing modules. A key 
requirement for the system is to securely store the 
private keys needed for secure session key 
exchanges and digital signatures. 

High quality and robust key management offline 
is challenging. A proposal for using encrypted PEM 
private keys and using the Secure Gateway as part 
of the decryption process was presented. This 
reduces the ability for an adversary to make use of 
any leaked key material.  

The ATECC608A hardware security module is 
used primarily for key storage and secure key 
exchanges. The AES-128 algorithm is 
implemented in the processor. Should AES become 
outdated, a new algorithm could be implemented in 
its place. However, if the Elliptic Curve 
Cryptography becomes outdated, new hardware 
would be required. The ability to upgrade 
hardware-based cryptography and maintain crypto-
agility is challenging when much of the structure of 
the messaging forces the implementation of 16-byte 
block ciphers and hardware-based security 
modules.  

Overall, this approach promises a viable solution 
to address the concerns with cybersecurity 
vulnerabilities resulting from the implementation 
of RP1210-based diagnostics. This part-time 
connection to the vehicle is challenging to protect 
because maintenance operations are often trusting 
and the technician has physical access. By securing 
diagnostics communication, we greatly improve 
the cybersecurity posture of the heavy vehicle.  
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the Secure Gateway and some Python code snippets 
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11. Partial Python Code Listing for the Secure Message Thread  
 
from cryptography.hazmat.backends import default_backend 
from cryptography.hazmat.primitives.asymmetric import ec 
from cryptography.hazmat.primitives.asymmetric import utils 
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes 
from cryptography.hazmat.primitives import hashes 
from cryptography.hazmat.primitives import serialization 
 
def setup(self): 
    # Sets up the  
    encrypted_key = None 
    while encrypted_key is None: 
        message_bytes = b'\x00' + struct.pack('>H', SESSION_ABORT)  
        self.send_message(message_bytes) 
        time.sleep(GATEWAY_REBOOT_TIME) #Wait for the gateway to reset 
        (gateway_public_key,  
             encrypted_key,  
             init_vector, 
             self.device_serial_number) = self.get_gateway_keys() 
    private_key = self.get_private_pem_key() 
    if private_key is not None: 
        shared_secret = private_key.exchange(ec.ECDH(),gateway_public_key)     
    else: 
        return False 
 
    backend = default_backend() 
    key_cipher = Cipher(algorithms.AES(shared_secret[:16]),  
                        modes.ECB(),  
                        backend=backend) 
    key_decryptor = key_cipher.decryptor() 
    key = key_decryptor.update(encrypted_key) + key_decryptor.finalize() 
    cipher = Cipher(algorithms.AES(key),  
                    modes.CBC(init_vector),  
                    backend=backend) 
    self.decryptor = cipher.decryptor() 
    self.encryptor = cipher.encryptor() 
    return True 
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def get_gateway_keys(self, public_key_bytes=None): 
    """We will send an ephemeral public key signed by a root of trust.  
    The root of trust is a private key stored on the local computer that is 
     envelope encrypted by a data key checked out from a server. The ATECC  
     device on the gateway can verify the signature.""" 
 
    self.empty_rp1210() 
     
    logger.debug("Requesting Device Serial Number.") 
    message_bytes = b'\x00' + struct.pack('>H',REQUEST_SERIAL_NUMBER) 
    self.send_message(message_bytes) 
    device_serial_number = self.readNbytes(SEND_SERIAL_NUMBER,9) 
 
    logger.debug("Requesting initialization vector.") 
    message_bytes = b'\x00' + struct.pack('>H',REQUEST_INIT_VECTOR) 
    self.send_message(message_bytes) 
    init_vector = self.readNbytes(SEND_INIT_VECTOR,16) 
     
    logger.debug("Requesting encrypted session key.") 
    message_bytes = b'\x00' + struct.pack('>H',REQUEST_ENCRYPTED_KEY) 
    self.send_message(message_bytes) 
    encrypted_key = self.readNbytes(SEND_ENCRYPTED_KEY,16) 
     
    logger.debug("Requesting device public key.") 
    message_bytes = b'\x00' + struct.pack('>H',REQUEST_PUBLIC_KEY) 
    self.send_message(message_bytes) 
    gateway_public_key_bytes = self.readNbytes(SEND_PUBLIC_KEY_DATA,64) 
 
    # Load the public key 
    gateway_public_key = ec.EllipticCurvePublicNumbers( 
                              int(gateway_public_key_bytes[:32].hex(),16),  
                              int(gateway_public_key_bytes[32:].hex(),16), 
                              ec.SECP256R1()).public_key(default_backend()) 
    logger.debug("Requesting public key signature.") 
    message_bytes = b'\x00' + struct.pack('>H',REQUEST_SIGNATURE) 
    self.send_message(message_bytes) 
    gateway_signature = self.readNbytes(SEND_SIGNATURE,64) 
 
    gateway_signature_der = utils.encode_dss_signature( 
                                int(gateway_signature[:32].hex(),16),  
                                int(gateway_signature[32:].hex(),16)) 
    try: 
        gateway_public_key.verify(gateway_signature_der,  
                                  gateway_public_key_bytes,  
                                  ec.ECDSA(hashes.SHA256())) 
        logger.debug("Good Signature") 
        return (gateway_public_key, encrypted_key,  
                  init_vector, device_serial_number) 
    except: 
        logger.debug(traceback.format_exc()) 
        logger.debug("Bad Signature") 
        return None, None, None 
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