
2020 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
SYMPOSIUM

CYBER TECHNICAL SESSION
AUGUST 11-13, 2020 - NOVI, MICHIGAN

SECURE HEAVY VEHICLE DIAGNOSTICS

Jeremy S. Daily, Ph.D., P.E.1, Prakash Kulkarni, Ph.D.2

1Department of Systems Engineering, Colorado State University, Fort Collins, CO

2DG Technologies, Inc., Farmington Hills, MI

ABSTRACT
A cybersecurity exploit can be crafted to affect the vehicle diagnostic adapter system, which

consists of the technician, vehicle diagnostic adapter, device drivers, and maintenance software
all working together in a trusting relationship.

In this paper, application layer encryption of the SAE J1939 diagnostic traffic between the
vehicle diagnostic application and the in-vehicle secure gateway is developed to mitigate the
vulnerabilities in potential attack paths. The proposed encryption strategy uses AES-128, which
uses 16-byte cipher blocks. The secure connection is established by adjusting the bit rate to over
twice the normal speed and packing a single J1939 message into two encrypted sequential CAN
frames,

The in-vehicle diagnostic gateway employs a hardware security module. A provisioning process
is employed wherein the diagnostic application and the hardware security module both generate
public-private key pairs. An elliptic curve Diffie-Hellman (ECDH) key exchange then takes place.
Thus, each diagnostic session uses ephemeral symmetric session keys that are securely exchanged
between the hardware security module and the diagnostics application.

This approach is effective in mitigating attacks originating at the driver (DLL) level, such as an
attacker that would exfiltrate and modify data using the system and vehicle diagnostic subsystems
in a Windows environment. Also, as the secure key system can be centrally administered, the ability
for user attribution through key management is possible.

While the approach requires the addition of a hardware security module on the vehicle, the
hardware strategy presented could be implemented in an arbitrary electronic control module on
the vehicle. Vulnerabilities and mitigations are explained in detail to provide a solution to secure
diagnostic sessions for heavy vehicles.

Citation: J. Daily, P. Kulkarni, “Secure Heavy Vehicle Diagnostics”, In Proceedings of the Ground Vehicle Systems
Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2020.

1. Introduction

Heavy vehicles undergo routine maintenance and
inspections, which entails connecting a vehicle
diagnostic adapter (VDA) to the diagnostic port on
the vehicle and running some diagnostic software
on the shop computer. This process happens

frequently and represents a potential cybersecurity
vulnerability. While the individual vehicle is often
disconnected from the diagnostic session, the
computer, usually a PC laptop running Windows, is
frequently connecting to the Internet. In fact, many

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 2 of 18

diagnostic software systems require Internet
connections for licensing and firmware updates.

The diagnostic connections for heavy vehicles
typically follow the recommended practice (RP)
number 1210 as published by the Technology and
Maintenance Council (TMC) of the American
Trucking Association (ATA) [1]. The concept
behind the RP1210 approach was to decouple the
diagnostic software from the vehicle network. This
gives the vehicle maintainer the ability to use only
one RP1210 compliant device that will work with
the different diagnostic software needed for the
subsystems of a heavy vehicle. The programmers
and developers of the maintenance software can
write to the RP1210 API and the vendors of the
different vehicle diagnostic adapters (VDAs) can
serve the API through their vendor specific
dynamically loaded libraries (DLLs).

From a security perspective, this approach implies
a sense of trust on behalf of the diagnostic software
regarding the sanctity of the vehicle network traffic.
This trust is only maintained if the VDA system
faithfully sends and receives the actual vehicle
network traffic. However, there are no controls in
place for the maintenance software or ECU for
validating the integrity and authenticity of the data
passing through the RP1210 subsystem.

Cybersecurity associated with heavy vehicles
have recently become an issue. While cybersecurity
related to passenger cars was brought to the
forefront in 2010 by Kosher, et al. [2], the heavy
vehicle industry lagged a few years. The National
Motor Freight Traffic Association, Inc’s
whitepaper on the state of heavy vehicle
cybersecurity in 2015 [3] marks a beginning of the
industry efforts to address cybersecurity efforts.
This provides a decent survey of the literature and
cybersecurity efforts taken place. The heavy
vehicle industry became more aware of the issue as
it started standard making efforts to address
cybersecurity. Also, descriptions of building
cybersecurity centric testbeds were presented in the
literature [4]. Product briefs and whitepapers have
come out regarding implementations for

technologies around diagnostics for passenger cars
[5], but there are no cybersecurity studies in the
literature for RP1210 based diagnostic systems.

2. Assumptions

The context of this work is based on some
enabling assumptions. These assumptions are
based on author experiences with commercial
heavy vehicles with limited knowledge of military
or proprietary systems.

We also assume the reader is familiar with some
basic cryptography primitives and cybersecurity
concepts. Ross Anderson provides a decent
introduction into modern cybersecurity [6].

Vehicle System Architecture

We assume all relevant diagnostic
communication takes place over a single CAN
channel as defined in SAE J1939. This CAN
channel is typically found on pins C and D of the
Deutsch 9-pin diagnostic connector in the driver
compartment of the cab of the vehicle. The bit rate
for the CAN bus is set to 250,000 bits per second.

Figure 1: Vehicle architecture showing potential attack vectors in
the diagnostic system.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 3 of 18

We assume there are no other diagnostic
communications, like a J1708/J1587 network or an
installed telematics device.

As shown in Figure 1, the secure gateway
separates the main SAE J1939 backbone from the
diagnostic port. There are no communications
through the diagnostic port for anything other than
vehicle diagnostics.

Physical access to the vehicle is required to
connect a vehicle diagnostics adapter to the
diagnostic port. Once the VDA is connected, the
vehicle system adds the additional hardware and
software stack of the diagnostic services, to include
the back-end servers.

Attack Vectors

For this work, we are assuming an attacker will
try to penetrate the Windows based diagnostic
computer or the vehicle diagnostic adapter. We
assume the diagnostic application is secure and
protected. Protecting the diagnostics software
against a cybersecurity attack may be important,
but it is beyond the scope of this paper. The security
of applications running on a PC would employ a
different set of solutions and can benefit from
existing strategies.

We also assume the SAE J1939 network traffic is
safe. This means the secure gateway will faithfully
report the J1939 traffic it sees to the PC
Application. While attacks to the J1939 network are
possible, they often require physical access or
tampering with the supply chain. Internal J1939
intrusion defenses are a subject of continuing study
but are beyond the scope of this paper.

An adversary can attack the diagnostic systems in
the following ways:

To summarize, the proposed solution aims to
mitigate attacks anywhere in the communication
chain from the PC based diagnostics application to
the diagnostics gateway.

3. Requirements

The goal of securing heavy vehicle diagnostics
needs to be broken down into smaller measurable

requirements by which the overall system can be
evaluated. These requirements drive design and
implementation decisions. There are many goals
and requirements to consider, so the following
subsection break them down by their scope.

System Requirements

Enumerated system requirements (SRs) for the
vehicle and diagnostic system are as follows:

SR1: Maintain compatibility with existing J1939
Architectures

SR2: Provide a solution that is agnostic of the
vehicle diagnostic adapter.

SR3: Enable offline diagnostics sessions.
SR4: Store CAN Data Logs based on event

triggers.

Cybersecurity Requirements
The cybersecurity requirements (CRs) are

enumerated as follows:
CR1: Use unique key material so any key leakage

does not compromise other systems.
CR2: Use secure storage hardware for private key

storage on the vehicle.
CR3: Use existing best practices for

cryptographic implementations. For example,
AES-128 can be used for symmetric encryption,
Elliptic Curve Cryptography can be used for
asymmetric encryption. Any new or untested
encryption systems shall not be used.

CR4: Any sensitive key material should be
encrypted for storage.

Design Alternatives

Before explaining the prototyped solution in
detail, this section will share some approaches that
were considered, but ultimately dismissed.

Alternative 1: Use a software only solution. This
approach would improve the capabilities of each
electronic control module to support secure
diagnostic communication. This approach was
abandoned because the authors do not have access
to the source codes to run on the individual modules
on the vehicle.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 4 of 18

Alternative 2: Use an alternative communication
path that circumvents the RP1210 communication
system. Perhaps Ethernet or wireless technologies
could be used This path would add another
hardware device to the solution and disrupt a well-
known and accepted workflow of connecting a
vehicle diagnostic adapter to the diagnostic port.

Alternative 3: Secure each individual path of
communications uniquely within the RP1210
chain. This approach would not transfer across the
different vendors of vehicle diagnostic adapters,
which was one of the issues that led to the creation
of RP1210 over 30 years ago.

The approach taken is hardware and driver
agnostic when it comes to the RP1210 vehicle
diagnostic adapter.

4. Hardware Prototype

Figure 2: Printed Circuit Board for hand assembly

Figure 3: Assembled circuit card assembly

Figure 4: Ruggedized enclosure to mount in a vehicle

In this section, we provide details of the hardware

prototype with enough detail for the reader to
reproduce our example. The following are the
essential components for the hardware design:

The solution to secure the diagnostics
communication requires a platform to perform the
security algorithms. Since access to source codes
and tool chains for existing gateways or electronic
control units is not practical, we designed our own
gateway leveraging open source software and
evaluation hardware. The platform of choice was
the Teensy 4.0 evaluation board from PJRC.com.
This evaluation board features a 600MHz
iMXRT1062 ARM-32bit processor with three
CAN channels, two of which are available on the
0.100” spaced headers of the Teensy 4.0.

The essential components of the circuit design
include the Teensy 4.0, both CAN transceivers, the
terminating resistors, and the ATECC608A
hardware security module. The SD Card provides
the additional capability for logging data.

The display, GPS, and inertial measurement unit
add features for status updates and contextual
information. These additional features are not
needed for secure diagnostic communication.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 5 of 18

The complete schematic diagram for the Secure
Gateway Prototype is shown in the Appendix. The
Teensy 4.0 evaluation board is connected to the
CAN busses with two Microchip MCP2562 CAN
Transceivers, which forms the break in the line for
the diagnostics communication. The printed circuit
board (PCB) was laid out for through-hole parts and
is available to purchase from Osh Park. The PCB
fits in a Deutsch/TE EEC-325X4B enclosure
designed for automotive use. The enclosure is
sealed with the Deutsch DTM13-12PA-R008 PCB
to connector system. Admittedly, the space in the
enclosure is tight when using the additional
prototyping features and display. Also, the SD Card
holder, FFC ribbon cable, and the ATECC608A
security module are surface mount packages, which
will require additional skill to hand assemble the
boards.

Figure 2 shows the layout of the printed circuit
board used in this study. The additional silkscreen
lettering helps with part placement and assembly by
hand. The completed system is shown in Figure 3
and the enclosed assembly is shown in Figure 4.

Installing the Secure Gateway

The Gateway enclosure can be mounted at any
convenient location on the vehicle.

Figure 5: Wiring harness for the Secure Gateway

The wired connector splits the connection to the
diagnostic

port. The wiring harness is for the Secure Gateway
is shown in Figure 5. The harness shows two 9-pin
diagnostic connectors; the plug with female
contacts is on the left of the illustration and the
socket with male contacts are on the right. The
typical heavy vehicle with have the Diagnostic
Network exposed in the driver’s compartment with
the male pins. The vehicle diagnostic adapter will
connect using the housing with female contact, as
shown on the left of Figure 5. This means the
gateway can be installed into the existing
diagnostic port and the new port installed in its
place. This installation creates a brand new point-
to-point CAN bus for use only by the vehicle
diagnostics adapter and the secure gateway. Since
this new network is not connected directly to the
J1939 network, we can define its message structure
and bitrate.

5. Secure Diagnostics
The strategy for maintaining confidentiality of the

messages passing through the VDA, its drivers, and
the USB stack is to encrypt each CAN frame using
AES-128. However, 128 bit block ciphers require
16 byte blocks and CAN only transmits 8 bytes (64-

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 6 of 18

bits) at a time. This means we will need to take each
J1939 frame and pack it into two high speed
encrypted CAN frames. These packed frames will
be enciphered and send over the diagnostic CAN
network in ordered pairs. The PC Application will
read these raw 11-bit CAN frames and reassemble
the message pairs, check their validity, and present
the decrypted J1939 message to the diagnostic
application for processing.

 The messages on the newly created point-to-
point diagnostic CAN Bus use 11-bit CAN IDs at
1,000,000 bits per second. Since this is twice the
speed of the fastest J1939 implementation
(500kbps), the diagnostic CAN Bus should be able
to keep pace with the original J1939 network, even
if each J1939 message was expanded and fit into 2
messages on the fast diagnostic CAN.

In this scheme, the first three bits of the 11-bit
CAN IDs are used to determine the message type.
There are three types of messages used, presented
below as C header defines:

#define SESSION_CONTROL 0x100
#define ENCRYPTED_DATA 0x200
#define HEART_BEAT 0x400

Figure 6: Separating a single J1939 CAN Frame into two 8-byte

To send encrypted data, the message ID starts

with a 0x200. The sequence is determined by the
first 8 bytes. Even values of the ID contain the first
part of the block cipher and the odd values of the
ID contain the last 8 bytes of the block cipher. A
breakdown of mapping a J1939 message to the pair

Figure 7: Flow chart describing the operations used to startup the
Secure Gateway

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 7 of 18

of ENCRYPTED_DATA messages is shown in
Figure 6. The cipher text data is calculated using
the AES-128 algorithm in cipher-block-chaining
mode (AES-CBC).

Implementation Flow Chart

There are four main routines to describe the
software operation of the Secure Gateway. There
are two standard routines, startup and loop,
followed by two interrupt routines to handle the
reception of CAN frames. There are two CAN
frame message processing routines: one for
receiving diagnostic communications from the
VDA and the other for processing messages from
the J1939 vehicle network.

The flow chart in shows the startup routine. The
first operation communicates with the
ATECC608A security module to determine its
serial number and state. The serial number will be
used by the diagnostics software on the PC to
determine what key is calculated to share a secret.
For the ATECC608A to perform the necessary
calculations, the configuration and data zones need
to be locked. A generated private key should be
stored and locked in the ATECC608A from which
it can calculate a public version of that key.

Once the public version of the Secure Device Key
is computed, in can be loaded into the
microprocessor memory and shared upon request.
To ensure against man-in-the-middle attacks, the
public key is digitally signed, so the receiving node
can have high confidence the public key is from the
correct device.

The ATECC608A also claims to have a true
random number generator (TRNG) that can
produce 32 bytes at a time. The startup procedure
requests these bytes and splits them into two 16-
byte words; one for the initialization vector and the
other for the AES-128 session key. From these
random numbers used once (nonce) values, an
encryptor and decryptor are setup using the AES-
128 algorithm in CBC mode.

With a symmetric encryptor and decryptor setup
on the Secure Gateway, there needs to be a way of
sharing the initialization vector and session key
with the Secure PC Diagnostics Application (PC
App). The method to share the session key is to
send an encrypted version of the key from the
Secure Gateway to the PC App. The session key is
encrypted with a computed shared secret derived

Figure 8: Main loop with basic utility calls

from the Elliptic Curve Diffie-Hellman key

exchange routine. However, the PC App does not
request the public key from the Secure Gateway.
Instead, it requests the key from the provisioning
service based on proper credentials. This provides
an opportunity for usage attribution and user
accountability, which is an improvement in the
cybersecurity posture compared to current
approaches.

The encryptor is setup to convert clear J1939
based vehicle CAN frames in enciphered diagnostic
CAN frames. The decryptor is setup for the

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 8 of 18

opposite operation, which is to take encrypted
diagnostics CAN message pairs and convert them
to J1939 vehicle network CAN frames. The same
ephemeral session key and initialization vector is
used for both the encryptor and decryptor.

Once the key material is initialized, the CAN
busses are started, one at the speed of the vehicle
bus and the other at the fastest rate specified for
CAN 2.0, which is 1Mbps. Once the CAN message
receive interrupt handlers are registered, the system
finishes with the startup routine and begins the
main processing loop.

The main loop, shown in Figure 8, is
predominantly responsible for updating the
displays and calling the service routine that sends
the CAN messages. The CAN messages are written
to a circular buffer first, then a service function is
called to push the CAN message from the circular
buffer to the CAN Controller.
Each time a CAN message is received from the
vehicle CAN bus, which is the J1939 network, an
interrupt service routine is executed. This routine is
shown in Figure 9. The first section of the receive
routine is to check the flags setup for a successful
session. The session is determined from a
successful key exchange and a consistent heartbeat
signal. If those prerequisites are confirmed, then the
message can be enciphered with the encryptor
object and transmitted as a pair of CAN frames.

The heartbeat signal is a CAN frame from the PC
App that is designated by starting the 11-bit CAN-
ID with 0x400. This message is crafted by the PC
App thread responsible for secure communication.
When a Secure Gateway decrypts the message, it
resets a timer and continues with the secure
diagnostics session. To inform the PC App that the
Secure Gateway is still connected, it reflects the
message. Since these messages are encrypted, the
session key and sequence must be preserved to have
a legible decoding of the heartbeat.

The decrypted message contained in the heartbeat
is a J1939-like frame with a 4-byte ID field
representing a counter, a data length code (DLC) of
8, and an arbitrary message of 8 bytes. This so-

called CAN frame is packed, encrypted and sent
according to the message structure shown in Figure
7. Since the heartbeat contains a 16-bit cyclic-
redundancy check, if the encrypted message was
either manipulated or decrypted with the wrong
cipher, the CRC check would fail, and the session
would timeout.

When the PC App is not running, the Secure
Gateway is not receiving any heartbeat signals and
the session has not been established. The Secure
Gateway is holding onto a session key from the
startup sequence and it is ready to share upon
request. To initiate the key exchange, the Secure
Gateway performs the interrupt service routine
shown in Figure 10.

The routine checks for three different kinds of
CAN message IDs as defined in Section 1.5. If the
first nibble of the 11-bit ID is of the SESSION type,
the following options are defined:
#define REQUEST_PUBLIC_KEY 0x110
#define SEND_PUBLIC_KEY_DATA 0x120
#define REQUEST_ENCRYPTED_KEY 0x130
#define SEND_ENCRYPTED_KEY 0x140
#define REQUEST_INIT_VECTOR 0x150
#define SEND_INIT_VECTOR 0x160
#define REQUEST_SERIAL_NUMBER 0x170
#define SEND_SERIAL_NUMBER 0x180
#define REQUEST_PASSCODE 0x190
#define SEND_PASSCODE 0x1A0
#define RESET_SESSION 0x1B0
#define REQUEST_SIGNATURE 0x1C0
#define SEND_SIGNATURE 0x1D0
#define SESSION_ERROR 0x1E0
#define SESSION_ABORT 0x1F0
Notice the special case of 0x1F0 is an abort

message that would restart the Gateway and
develop new session keys.

Since the PC App initiates the communication, it
first requests the serial number of the secure
gateway. The define for this request is 0x170. This
means that if the Secure Gateway sees a message
with the ID of 0x170, then it will reply with the
11bit ID of up to 16 messages of 0x180 + n, where
n = 0x0,1,2, …, F, is the sequence number.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 9 of 18

Figure 9: Vehicle Message Interrupt Service Routine

Since the largest data exchange using ECC with
the P256 curve is 64 bytes, only 8 messages
maximum are needed to respond with the requested
data.

After the PC App requests and receives the serial
number of the Secure Gateway, it needs to calculate
the same shared secret. The shared secrets are
calculated using their own private key and the
public key of the other device. The public key used
by the Secure Gateway was loaded from secure
memory upon boot and subsequently used to
determine a shared secret, the PC Application needs
to calculate its shared secret based on the private
key that the Secure Gateway already had. This
means the PC Application needs to either 1) request
that the session key be decoded from a secure
service, or 2) check out the private key matching
the pre-shared public key so it can compute its own
shared secret. To understand how a key checkout or
secret calculation is implemented, we need to
discuss device provisioning.

6. Key Management

The strategy to secure diagnostic communications
is to always use ephemeral session keys generated
by a high-quality random number generator built
into the Secure Gateway.

Secure Device Provisioning

When the Secure Gateway is ready for final
testing and assembly, it needs to be provisioned. At
a minimum, the ATECC608A is configured such
that a self-generated P256 ECC key is generated
and locked into a slot. In this prototype, we
designated Slot 0 to contain this unique private key.
This key should never be readable or able to be
leaked. From the key stored in Slot 0, a public key
can be generated and shared with a database. The
database key is the 72-bit unique ID in ASCII form
(18 characters). In addition to storing the public key
from the ATECC608A chip in the database, a
server private key from the P256 curve is generated
along with its corresponding public key.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 10 of 18

Figure 10: Flow diagram to process CAN frames from the Vehicle

Diagnostic Adapter and the PC Application

This process generates the ability for a pre-shared
secret to be calculated. Furthermore, the
ATECC608A can update the server public key
using a privileged write feature.

All key material should be encrypted at rest with
a key tied to a hardware security module. In the
prototype example, we have implemented the
database as Amazon Web Services DynamoDB and
each device has a data key produced and encrypted
using the AWS Key Management Service. This
provides an audit trail into who and when the key
material is being used.

By pre-sharing public keys, it is fairly
straightforward to verify if requests are from
legitimate sources. If the public keys do not match,
then the device is not part of the ecosystem.

Checking Out Keys

There may be cases where a maintainer may want
to initiate a secure diagnostic session when access
to the server and database is not feasible. In this
case, a set of anticipated keys can be checked out
from the server and stored locally on the PC App
machine. At first, this may sound very risky since
the device private keys will be on a potentially
unsecured computer. To mitigate this risk, the
private keys checked out from the server are in the
encrypted PEM format. Furthermore, the passcode
to decrypt the PEM key is derived from the pre-
shared secret and a passcode. This means the
operator needs to have physical access to the
vehicle and the gateway to decrypt the PEM key in
addition to an 8-byte unique passcode. Having
access to the vehicle without an authorized user
passcode or having a passcode without the
hardware renders the key material meaningless.

During the provisioning process, the preshared
secret is calculated on the server because the server
has generated a private key and shared the public
key. The ATECC608A has done the same. Two
random strings of characters are generated on the
server. The first string is used as a passcode. The
other string is padded with 8 zeros to make a 16-
byte block. This 16-byte block is encrypted using

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 11 of 18

the AES-128 in ECB mode to create a ciphertext of
the PEM key pass code.

Creating the PEM file key

The implementation used during provisioning is
an AWS lambda function written in Python. The
source code is available as open source on Github1.
The algorithm of the provisioning is as follows:

If an authorized, valid user requests a key for
offline use, then the server will respond with the
Encrypted Server Private Key and the Random
device code. The Random device password will be
emailed to the authorized user. Since the only way
to derive the actual password is through the AES-
128 cipher based on the preshared key, only the
server or the ATECC608A can compute the
passcode. This means there are two levels of
security for the unique key material: the passcode
(something you know) and the device code
(something you have).

Secure Session Key Exchange

The PC App initiates the session. In the Python -
based prototype, the SecureMessageThread class
was defined to handle the setup, encryption, and
decryption of the PC App. The thread
communicates with the rest of the program through
queues and requires function prototypes to
communicate with the VDA DLL.

To demonstrate the setup when starting the
SecureMessageThread in the PC App, a transcript
of the network traffic is shown in the following
paragraphs. The CAN traffic is the direct output of
the Linux SocketCAN can-utils program called
candump.

can1 1F0 [8] 00 00 00 00 00 00 00 00
can1 170 [0]

can1 180 [8] 01 23 71 6D B2 52 F4 6C
can1 181 [8] EE 01 01 01 56 6C 4A 4B

can1 150 [0]

1

https://github.com/SystemsCyber/CANWatermarking/blob/
master/serverless/provision.py

can1 160 [8] F6 73 9D 2A 5E 03 B0 CB
can1 161 [8] 62 FE 82 72 84 41 55 DA

can1 130 [0]
can1 140 [8] 6F 02 7E E7 AA 83 1B 06
can1 141 [8] 07 68 CD A9 43 5D 0B 82

can1 110 [0]
The Secure Gateway sends the device public key
can1 120 [8] 56 6C 4A 4B D2 40 82 F9
can1 121 [8] 85 42 51 64 7B 97 25 35
can1 122 [8] 49 A4 1D 53 69 92 D3 6D
can1 123 [8] 14 0F B7 A6 6A CA 94 C9
can1 124 [8] 81 FF B5 A3 8F 5C D9 BF
can1 125 [8] 9E 20 46 CE 5B 77 72 F9
can1 126 [8] 1F BA BA 7A 88 90 BB 45
can1 127 [8] 51 E1 83 A5 B3 03 9F 28

can1 1C0 [0]
can1 1D0 [8] 1D 95 7D D4 B0 4B BB CE
can1 1D1 [8] FA 76 23 AB 6C CB AF F6
can1 1D2 [8] F7 D8 42 E5 35 A2 60 98
can1 1D3 [8] 40 6C 20 E9 E3 6B EA FE
can1 1D4 [8] B4 49 9E D8 93 F3 D4 78
can1 1D5 [8] 86 20 80 EC AA 64 FF 3A
can1 1D6 [8] 64 7E 54 91 86 AD 60 E0
can1 1D7 [8] 0B 25 53 3E 92 1B 09 9D

The PC App can now verify the public key.
can1 190 [8] 42 41 74 6B 75 39 38 6A
can1 1A0 [8] 98 E6 60 B6 17 A3 7C 65
can1 1A1 [8] 39 9C 4A 50 8D CB 4C A6

The PC App prepends the passcode to the returned
device code to create a 24-byte key for the
encrypted PEM file on the PC. This PEM key is
loaded into memory and used to compute the shared
secret that was used to encrypt the session key.
Once the session key is decrypted and the encryptor
and decryptor are initialized, a heartbeat is
transmitted.

can1 400 [8] BA 21 FA 3E A6 E5 7E 95
can1 401 [8] D6 DD 63 42 04 20 04 2F
can1 406 [8] 95 E1 9E D9 32 75 DE 55
can1 407 [8] 09 DC 09 4D B8 3C DF CF
can1 200 [8] C9 DA F9 C2 E1 CC A3 BC
can1 201 [8] 3D 04 50 D2 49 9D A2 E0
can1 202 [8] 41 83 BF E1 91 26 89 46
can1 203 [8] 50 D7 A2 18 FE A6 1C B6
can1 204 [8] FC C6 DC DB 87 6F 8B CC
can1 205 [8] E7 C8 10 A2 AD E2 6D 8F

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 12 of 18

can1 206 [8] E6 A3 61 28 29 12 CD 7C
can1 207 [8] 42 5A 5F 26 F0 1C 7D 58
can1 208 [8] 2E 1A FA 8E 63 2B DF C7
can1 209 [8] AA BB 06 C1 6E 1F 6A C9

Analysis of the Session Setup

The transcript of the session setup shows about
200 bytes of data are exchanged. However, the
public key and its signature may not be needed,
except for provisioning. Since the ATECC608A
secret key is not changing and the server public key
is not changing, the derived shared secret is not
changing. Therefore, it can be securely stored in
one of the protected slots of the ATECC chip and
the need to exchange public keys is eliminated.

Key material on the CAN bus is either AES
encrypted, as in the session key, or is only a partial
key, as in the device code. The need to send the
device code over the CAN bus is because the PC
App cannot reach the backend server. With a
connected PC App, there would be no need for the
device code because the encrypted session key
would be decrypted on the server and transmitted
back to the PC App using an https protocol (TLS).

The benefits of this setup approach include
If the requirement to be able to have diagnostic

sessions without Internet connectivity is relaxed,
then the encrypted session key could be decrypted
on the server with only the serial number as the
accompanying piece of information.

7. Cybersecurity Attacks

To test the Secure Gateway and PC App
functionality and demonstrate the efficacy of the
approach a few cyberattacks were implemented on
a test bench. These attacks focused on two entry
points: 1) the DLL driver and 2) the VDA firmware.
The attacks targeted two types of messages: A)
single frame J1939 messages, 2) Multiframe
messages using the J1939 Transport Protocol.
Other transport protocol attacks would be similar.

The attacks manifest themselves as man-in-the-
middle attacks. The effect would be the same if the
attack was implemented as a Shim DLL, a rogue
VDA, or an actual CAN man-in-the-middle device.

Shim DLL

The Shim DLL pretends to be an actual RP1210
compliant device driver with legitimate function
calls to perform RP1210 tasks. However, instead of
having an actual device driver to implement the
commands and send messages, the Shim DLL loads
an actual vendor supplied DLL and passes through
the function calls. However, the Shim DLL has the
ability to change the data before it presents the
message to the PC App or the actual VDA driver.
Hence, the Shim DLL acts as a man-in-the-middle.

Compromised VDA

A compromised VDA would have a version of
firmware that does not faithfully report the message
traffic between the vehicle networks and the PC.
Creating an attacker VDA requires some
knowledge of the device driver and device
firmware and access to the tool chain. However,
update mechanisms exist where an attacker could
convert a VDA to an attack node.

An example of a purpose built compromised
VDA is shown in Figure 11. Obviously, the overt
graphics in Figure 11 would not be present in a
realistic setting. Many RP1210 vehicle diagnostic
adapters have no cybersecurity protections and
should not be trusted.

Figure 11: A compromised vehicle diagnostics adapter (VDA)

Single Frame Attacks
A single frame attack on a CAN bus with a man-

in-the-middle follows a basic algorithm:

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 13 of 18

An example attack is to affect the Engine hours
report. Many rental companies use the Engine
hours as a method to bill the customer for use of
machines. If the diagnostic system underreported
the hours, then the customer may need to pay less.
Total Engine Hours of Operation are in the first
four bytes of the J1939 message with a PGN of
65253.

Multi Frame Attacks

SAE J1939 networks have a Transport Protocol as
define in SAEJ1939-21 where the parameters that
are over 8 bytes are broken into CAN frames and
then reassembled to present the original data. The
challenge for attacking this data is the PGN to
identify the data type is contained in the Transport
Layer – Connection Management (TP-CM)_ as the
last three bytes in the data field. If an attacker
wanted to change the VIN as it passed from the
J1939 network to the diagnostics application, the
algorithm would have to look for the TP-CM
message to identify the PGN of 65260. Since the
PGN is encoded in reverse byte order, the TP-CM
message ending in 0xEC, 0xFE, 0X00 would be the
setup message for transferring the VIN. Subsequent
Transport Protocol- Data Transfer (TP-DT)
messages, with a PGN of 60160, will contain the
data for the VIN. These messages are the ones for
manipulation.

Attack Example

An example of manipulating the Engine hours and
VIN is show in Figure 11 and Figure 12. The valid
data, as reported on the J1939 network, is shown
highlighted in yellow. After an attack was
launched, the data was changed as shown in Figure
12. The attack on the Engine hours was to change
all the bytes to 0xAA. The 32-bit unsigned integer
0xAAAAAAAA is 2,863,311,530 in decimal. The
conversion factor for engine hours according to
J1939 is 0.05 hours per bit, which gives the
displayed value of 143,165,576.5 hours in Figure
12. Changing the first part of the VIN to ATTACK
should be readily seen in the figures.

Figure 12: Diagnostic software displaying the normal VIN and

Engine hour data.

Figure 13: Results of an attack through the diagnostics system that

show different hours and VIN.

Exfiltration Attacks

The RP1210 system is capable of logging all the
data through the vendor specific DLL. This logging
feature can be enabled in the Windows
environment without the need for any additional
hardware. If a diagnostic computer is
compromised, logging feature of the Shim DLL
could be enabled, and the Shim DLL could transfer
that data to an unauthorized organization. This
process of exfiltration can lead to a significant

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 14 of 18

amount of readiness and operational data for heavy
vehicles. Corporations could assess their
competition with greater intelligence (i.e.
determine routes and customers), and defense
operations may not want other nation states to see
vehicle utilization data. Instead of eliminating
leakage of data from the Windows machine, we
assume data may be leaked. If this is the case, we
want the data to mean nothing to the recipient.

Mitigating the Attacks

Since the attacks rely on identifying the messages
coming through the diagnostic services, the core
trigger for implementing the attack is not present
due to the encrypted messages having no
identifiable pattern. This means an attacker could
only randomly affect messages. If the messages
were manipulated between the Secure Gateway and
the PC application, the decryption would fail and
the CRC would not match. The message would be
dropped.

If data were exfiltrated, the AES-CBC data stream
would be meaningless without the key. Since the
session key is securely exchanged using ECDH, the
likelihood of any actionable intelligence from this
data leakage is minimal.

8. Concluding Remarks

The diagnostics and maintenance system of J1939
enabled heavy vehicles uses a potentially
vulnerable vendor agnostic system known as
RP1210. The RP1210 system came to being from
market pressures to homogenize tooling and
adapters needed to communicate with heavy
vehicles in the 1990s, well before the ubiquitous
connectivity of today. The RP1210 system in use
today uses third party vehicle diagnostic adapters
and device driver software. Attacks exploiting
these communication stacks were demonstrated as
Engine hours and VIN were changed.

The solution demonstrated in this work introduces
a Secure Gateway to communicate directly with the
PC diagnostics application using the existing
vulnerable RP1210 system. Since all the messages

flowing through the vulnerable system are
encrypted using AES-128, previously effective
cyberattacks are mitigated.

A key enabler for this approach to maintain the
bandwidth and throughput of the existing J1939
network was the ability to operate in a point-to-
point mode at 1 Mbps speed. This ensures that high
busload operations, like reprogramming, maintain
their current level of performance.

While the prototype introduced an additional
hardware module in the Secure Gateway,
alternative implementations are feasible if the logic
can be implemented in existing modules. A key
requirement for the system is to securely store the
private keys needed for secure session key
exchanges and digital signatures.

High quality and robust key management offline
is challenging. A proposal for using encrypted PEM
private keys and using the Secure Gateway as part
of the decryption process was presented. This
reduces the ability for an adversary to make use of
any leaked key material.

The ATECC608A hardware security module is
used primarily for key storage and secure key
exchanges. The AES-128 algorithm is
implemented in the processor. Should AES become
outdated, a new algorithm could be implemented in
its place. However, if the Elliptic Curve
Cryptography becomes outdated, new hardware
would be required. The ability to upgrade
hardware-based cryptography and maintain crypto-
agility is challenging when much of the structure of
the messaging forces the implementation of 16-byte
block ciphers and hardware-based security
modules.

Overall, this approach promises a viable solution
to address the concerns with cybersecurity
vulnerabilities resulting from the implementation
of RP1210-based diagnostics. This part-time
connection to the vehicle is challenging to protect
because maintenance operations are often trusting
and the technician has physical access. By securing
diagnostics communication, we greatly improve
the cybersecurity posture of the heavy vehicle.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 15 of 18

9. REFERENCES

 [1] “RP1210: Windows API” in Recommended
Practices Manual, American Trucking
Association, Technology and Maintenance
Council, 2016-2017.

[2] Karl Koscher, Alexei Czeskis, Franziska
Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian
Kantor, Danny Anderson, Hovav Shacham,
Stefan Savage, “Experimental Security
Analysis of a Modern Automobile” IEEE
Symposium on Security and Privacy, Oakland,
CA, May 16–19, 2010.

[3] National Motor Freight Traffic Association,
Inc, “A Survey of Heavy Vehicle Cyber
Security,” September 2015, Last accessed on
June 1, 2020 from
http://www.nmfta.org/documents/hvcs/nmfta
heavy duty vehicle cyber security whitepaper
v1.0.3.6.pdf

[4] Daily, J., Gamble, R., Moffitt, S., Raines, C. et
al., "Towards a Cyber Assurance Testbed for
Heavy Vehicle Electronic Controls," SAE Int.
J. Commer. Veh. 9(2):339-349, 2016,
https://doi.org/10.4271/2016-01-8142.

[5] “Automotive Gateway: A Key Component to
Securing the Connected Car,” NXP, Inc., Last
Accessed 1 June 2020 from
https://www.nxp.com/docs/en/white-
paper/AUTOGWDEVWPUS.pdf

[6] Anderson, R. “Security Engineering” 3rd Ed.,
Wiley & Sons, 2020. Preview available at
https://www.cl.cam.ac.uk/~rja14/book.html

10. APPENDIX

The appendix includes the schematic diagram of
the Secure Gateway and some Python code snippets
for establishing the secure session for the PC App.

https://doi.org/10.4271/2016-01-8142
https://www.nxp.com/docs/en/white-paper/AUTOGWDEVWPUS.pdf
https://www.nxp.com/docs/en/white-paper/AUTOGWDEVWPUS.pdf
https://www.cl.cam.ac.uk/%7Erja14/book.html

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 16 of 18

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 17 of 18

11. Partial Python Code Listing for the Secure Message Thread

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.asymmetric import ec
from cryptography.hazmat.primitives.asymmetric import utils
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives import serialization

def setup(self):
 # Sets up the
 encrypted_key = None
 while encrypted_key is None:
 message_bytes = b'\x00' + struct.pack('>H', SESSION_ABORT)
 self.send_message(message_bytes)
 time.sleep(GATEWAY_REBOOT_TIME) #Wait for the gateway to reset
 (gateway_public_key,
 encrypted_key,
 init_vector,
 self.device_serial_number) = self.get_gateway_keys()
 private_key = self.get_private_pem_key()
 if private_key is not None:
 shared_secret = private_key.exchange(ec.ECDH(),gateway_public_key)
 else:
 return False

 backend = default_backend()
 key_cipher = Cipher(algorithms.AES(shared_secret[:16]),
 modes.ECB(),
 backend=backend)
 key_decryptor = key_cipher.decryptor()
 key = key_decryptor.update(encrypted_key) + key_decryptor.finalize()
 cipher = Cipher(algorithms.AES(key),
 modes.CBC(init_vector),
 backend=backend)
 self.decryptor = cipher.decryptor()
 self.encryptor = cipher.encryptor()
 return True

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Heavy Vehicle Diagnostics, Daily, et al.

Page 18 of 18

def get_gateway_keys(self, public_key_bytes=None):
 """We will send an ephemeral public key signed by a root of trust.
 The root of trust is a private key stored on the local computer that is
 envelope encrypted by a data key checked out from a server. The ATECC
 device on the gateway can verify the signature."""

 self.empty_rp1210()

 logger.debug("Requesting Device Serial Number.")
 message_bytes = b'\x00' + struct.pack('>H',REQUEST_SERIAL_NUMBER)
 self.send_message(message_bytes)
 device_serial_number = self.readNbytes(SEND_SERIAL_NUMBER,9)

 logger.debug("Requesting initialization vector.")
 message_bytes = b'\x00' + struct.pack('>H',REQUEST_INIT_VECTOR)
 self.send_message(message_bytes)
 init_vector = self.readNbytes(SEND_INIT_VECTOR,16)

 logger.debug("Requesting encrypted session key.")
 message_bytes = b'\x00' + struct.pack('>H',REQUEST_ENCRYPTED_KEY)
 self.send_message(message_bytes)
 encrypted_key = self.readNbytes(SEND_ENCRYPTED_KEY,16)

 logger.debug("Requesting device public key.")
 message_bytes = b'\x00' + struct.pack('>H',REQUEST_PUBLIC_KEY)
 self.send_message(message_bytes)
 gateway_public_key_bytes = self.readNbytes(SEND_PUBLIC_KEY_DATA,64)

 # Load the public key
 gateway_public_key = ec.EllipticCurvePublicNumbers(
 int(gateway_public_key_bytes[:32].hex(),16),
 int(gateway_public_key_bytes[32:].hex(),16),
 ec.SECP256R1()).public_key(default_backend())
 logger.debug("Requesting public key signature.")
 message_bytes = b'\x00' + struct.pack('>H',REQUEST_SIGNATURE)
 self.send_message(message_bytes)
 gateway_signature = self.readNbytes(SEND_SIGNATURE,64)

 gateway_signature_der = utils.encode_dss_signature(
 int(gateway_signature[:32].hex(),16),
 int(gateway_signature[32:].hex(),16))
 try:
 gateway_public_key.verify(gateway_signature_der,
 gateway_public_key_bytes,
 ec.ECDSA(hashes.SHA256()))
 logger.debug("Good Signature")
 return (gateway_public_key, encrypted_key,
 init_vector, device_serial_number)
 except:
 logger.debug(traceback.format_exc())
 logger.debug("Bad Signature")
 return None, None, None

	1. Introduction
	2. Assumptions
	Vehicle System Architecture
	Attack Vectors
	
	
	

	3. Requirements
	System Requirements
	Cybersecurity Requirements
	Design Alternatives

	4. Hardware Prototype
	
	
	
	Attack Vectors
	
	
	

	3. Requirements
	System Requirements
	Cybersecurity Requirements
	Design Alternatives
	Attack Vectors
	
	
	

	3. Requirements
	System Requirements
	Cybersecurity Requirements
	Design Alternatives
	Attack Vectors
	
	
	

	3. Requirements
	System Requirements
	Cybersecurity Requirements
	Design Alternatives
	Attack Vectors
	
	
	

	3. Requirements
	System Requirements
	Cybersecurity Requirements
	Design Alternatives
	Attack Vectors
	
	
	

	3. Requirements
	System Requirements
	Cybersecurity Requirements
	Design Alternatives
	Attack Vectors
	
	
	

	3. Requirements
	System Requirements
	Cybersecurity Requirements
	Design Alternatives
	Attack Vectors
	
	
	

	3. Requirements
	System Requirements
	Cybersecurity Requirements
	Design Alternatives
	Analysis of the Session Setup
	
	
	

	7. Cybersecurity Attacks
	Shim DLL
	Compromised VDA
	Single Frame Attacks
	1.
	2.
	3.
	4.
	Multi Frame Attacks
	Attack Example
	Exfiltration Attacks
	Mitigating the Attacks

	8. Concluding Remarks
	9. REFERENCES
	10. APPENDIX
	Attack Vectors
	
	
	

	3. Requirements
	System Requirements
	Cybersecurity Requirements
	Design Alternatives
	Attack Vectors
	
	
	

	3. Requirements
	System Requirements
	Cybersecurity Requirements
	Design Alternatives

